CSCI 210: Computer Architecture
Lecture 5: MIPS, Number Systems

Stephen Checkoway
Oberlin College

Feb. 28, 2022
Slides from Cynthia Taylor

Announcements

* Problem Set 1 due Friday 23:59

e Office hours Tuesday 13:30-14:30

Memory Instructions

« lw $to, o(%$tl)
—$t0 = Mem[$t1+0]
— Loads 4 bytes from $t1, $ti1+1, $ti1+2, and $t1+3
e sw $to, 4(%$tl)
—Mem[$t1+4] = $tO
— Stores 4 bytes at $t1+4, $t1+5, $t1+6, and $t1+7

* These instructions are the cornerstones of our being able to go
to and from memory

Memory Operand Example 1

* Ccode:

g = h + A[8];

—gin Ss1, hiin Ss2, base address of A in $s3, A is an array of 4 byte ints
 Compiled MIPS code:

— Index 8 requires offset of 32

Tw $t0, 32($s3)
add $s1, $s2, $tO

Translate to MIPS

e Ccode:g=h+A[5];
— gin $si, hin $s2, base address of A in Ss3.
— Ais an array of 4-byte ints

A. |Tw $t0, 5($s3)
add $s1, $s2, $tO

B. [1w sto, 20(ss3)
" ladd $s1, $s2, $tO

C Tw $t0, $s5
* |add $s1, $s2, $tO

D Tw $t0, $s3
* |add $s1, $s2, $tO

Memory Operand Example 2

* Ccode:

A[12] = h + A[8];

— h in Ss2, base address of A in Ss3
 Compiled MIPS code:

— Index 8 requires offset of 32

Tw $t0, 32($s3) # load word
add $t0, $s2, $tO
sw $t0, 48($s3) # store word

When a 2-byte word is stored in byte-addressed
memory (occupying two consecutive bytes), is the
most significant byte (MSB) stored in the lower
address or the higher address?

0| 0000 1111

A. Low =15
1| 0000 0000

0| 0000 0000
1| 0000 1111

B. High

15

C. It Depends

Byte ordering

Big-endian: Most significant byte in lowest address
— MIPS, Motorola 68000, PowerPC (usually), SPARC (usually), ...

Little-endian: Most significant byte in highest address
— Intel x86, x86-64, ARM (usually), ...

Bi-endian: Switchable between big and little endian
— ARM, PowerPC, Alpha, SPARGC, ...

Middle-endian/mixed-endian

— Bytes not stored in either order, at least in some cases

Big-endian means most significant byte/digit/piece comes first, little-
endian means least significant byte/digit/piece comes first. Mixed-
endian means not in order.

Which row of the table correctly identifies the endianness of date
formats?

- US (MM-DD-YYYY) | Most of the world (DD-MM-YYYY) | ISO 8601 (YYYY-MM-DD)

A Little Mixed Big

B Big Little Mixed
C Mixed Little Big

D Mixed Big Little
E Little Big Mixed

Immediate Operands

* Constant data specified in an instruction
—addi $s3, $s3, 4
— 1i $to, -25 # Pseudoinstruction: addi $to0, $zero, -25
— ori $vo, $t8, 1

Pseudoinstructions

e move dest, src => add dest, $zero, src
e subl dest, src, imm => addi dest, src, -imm
e 11 dest, imm => addi dest, $zero, imm

* More complicated expansions are possible, MARS simulator
will show you how it expands pseudoinstructions

Subtract 2 from $sO and store in register Ssl
A.addi $s0, S$sl1, -2
B.addi Ssl, Ss0, -2
C.subi $s0, Ssl1, 2
D.subi sl, Ss0, 2

E. More than one of the above

MIPS Design Principles

* Simplicity favors regularity
— fixed size instructions
— small number of instruction formats
 Smaller is faster
— limited instruction set
— limited number of registers in register file
 Make the common case fast
— arithmetic operands from the register file (load-store machine)
— allow instructions to contain immediate operands

Loading a large number into a register

Immediates are limited to 16 bits
— -32768to0 32767 or 0 to 65535

Numbers outside this range need to be loaded into registers
oefore being used

oad upper immediate instruction sets the most-significant 16
oits of a register

—lui $te, ox1234
ori $t0, $to, ox5678

When li is given a value that’s too large, the assembler expands
it to lui/ori

MIPS Questions?

Why we need to learn binary (and other number
systems)

 Fundamental to how your computer works

— Will need a good grasp of binary to understand things like logical
operations

— Will need to translate to binary to work out examples

* Need to understand it to understand many things like network
protocols (IP addresses), bit masking, etc.

Positional Notation

* The meaning of a digit depends on its position in a number.

* A number, written as the sequence of digitsd d_ ,...d,d,d, in
base b represents the value

d,*b"+d, *b™+...+d,*b2+d; *bl+dy*b°

Consider 101

* In base 10, it represents the number 101 (one hundred one) =

* In base 2, 101, =

* In base §, 101, =

. 26

. 51

. 126

. 130

101, = ?

. -10

. 10

. =30

101 ,=?

Binary: Base 2

e Used by computers

* A number, written as the sequence of digitsd.d,_ ,...d,d,d,
where d is in {0, 1}, represents the value

d,*2"+d * 2"+ ... +d,*22+d; * 21 +djy * 2°

Computers Use Binary Because

. Decimal takes too much space
. It’s easier to do math with binary
. It is easy to represent two states (on/off) with electricity

. None of the above

Decimal: Base 10

e Used by humans

* A number, written as the sequence of digitsd.d,_ ,...d,d,d,
where d isin {0,1,2,3,4,5,6,7,8,9}, represents the value
d *10"+d_,* 10" +..+d,* 102 +d, * 10 + d, * 10°

Hexadecimal: Base 16

e Like binary, but shorter!
e Each digitis a “nibble”, or half a byte (4 bits)
* |Indicated by prefacing number with Ox (usually)

* A number, written as the sequence of digitsd.d_ ,...d,d,d,
where disin{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}, represents the
value

d *16"+d ,* 16" +..+d, * 162+d, * 161 +d, * 160

Octal: Base 8

 Sometimes used to shorten binary
— Used to specify UNIX permissions (remember 2417?)

* A number, written as the sequence of digitsd.d_ ,...d,d,d,
where d isin {0,1,2,3,4,5,6,7}, represents the value

d,*8"+d,,*8"1+...+d,*8 +d, *8+d,*8&°

. 24

. 25

. 200

. 208

. None of the above

Reading

* Next lecture: Negatives in binary
— Section 2.4

* Problem Set 1 — due Friday

